dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system
VerfasserIn R. M. Thomas, K. Lehmann, H. Nguyen, D. L. Jackson, D. Wolfe, V. Ramanathan
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 5, no. 1 ; Nr. 5, no. 1 (2012-01-27), S.243-257
Datensatznummer 250002319
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-5-243-2012.pdf
 
Zusammenfassung
We present here the first application of a lightweight unmanned aerial vehicle (UAV) system designed to measure turbulent properties and vertical latent heat fluxes (λE). Such measurements are crucial to improve our understanding of linkages between surface moisture supply and boundary layer clouds and phenomena such as atmospheric rivers. The application of UAVs allows for measurements on spatial scales complimentary to satellite, aircraft, and tower derived fluxes. Key system components are: a turbulent gust probe; a fast response water vapor sensor; an inertial navigation system (INS) coupled to global positioning system (GPS); and a 100 Hz data logging system. We present measurements made in the continental boundary layer at the National Aeronautics and Space Administration (NASA) Dryden Research Flight Facility located in the Mojave Desert. Two flights consisting of several horizontal straight flux run legs up to ten kilometers in length and between 330 and 930 m above ground level (m a.g.l.) are compared to measurement from a surface tower. Surface measured λE ranged from −53 W m−2 to 41 W m−2, and the application of a Butterworth High Pass Filter (HPF) to the datasets improved agreement to within +/−12 W m−2 for 86% of flux runs, by removing improperly sampled low frequency flux contributions. This result, along with power and co-spectral comparisons and consideration of the differing spatial scales indicates the system is able to resolve vertical fluxes for the measurement conditions encountered. Challenges remain, and the outcome of these measurements will be used to inform future sampling strategies and further system development.
 
Teil von