dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Long-term and seasonal variations in CO2: linkages to catchment alkalinity generation
VerfasserIn S. A. Norton, B. J. Cosby, I. J. Fernandez, J. S. Kahl, M. Robbins Church
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 5, no. 1 ; Nr. 5, no. 1, S.83-91
Datensatznummer 250002257
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-5-83-2001.pdf
 
Zusammenfassung
As atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook in Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b) indicate that seasonal and yearly variations in soil PCO2 are adequate to enhance or even reverse acid-base (alkalinity) changes anticipated from modest decreases of SO4 in surface waters. Alkalinity is generated in the soil by exchange of H+ from dissociation of H2CO3, which in turn is derived from the dissolving of soil CO2. The variation in soil PCO2 produces an alkalinity variation of up to 15 meq L-1 in stream water. Detecting and relating increases in alkalinity to decreases in stream SO4 are significantly more difficult in the short term because of this effect. For example, modelled alkalinity recovery at Bear Brook due to a decline of 20 meq SO4 L-1 in soil solution is compensated by a decline from 0.4 to 0.2% for soil air PCO2. This compensation ability decays over time as base saturation declines. Variable PCO2 has less effect in more acidic soils. Short-term decreases of PCO2 below the long-term average value produce short-term decreases in alkalinity, whereas short-term increases in PCO2 produce short-term alkalization. Trend analysis for detecting recovery of streams and lakes from acidification after reduced atmospheric emissions will require a longer monitoring period for statistical significance than previously appreciated.

Keywords: CO2 , alkalinity, acidification, recovery, soils, climate change

 
Teil von