dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A sublimation technique for high-precision measurements of δ¹³CO2 and mixing ratios of CO2 and N2O from air trapped in ice cores
VerfasserIn J. Schmitt, R. Schneider, H. Fischer
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 4, no. 7 ; Nr. 4, no. 7 (2011-07-19), S.1445-1461
Datensatznummer 250002055
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-4-1445-2011.pdf
 
Zusammenfassung
In order to provide high precision stable carbon isotope ratios (δ13CO2 or δ13C of CO2) from small bubbly, partially and fully clathrated ice core samples we developed a new method based on sublimation coupled to gas chromatography-isotope ratio mass spectrometry (GC-IRMS). In a first step the trapped air is quantitatively released from ~30 g of ice and CO2 together with N2O are separated from the bulk air components and stored in a miniature glass tube. In an off-line step, the extracted sample is introduced into a helium carrier flow using a minimised tube cracker device. Prior to measurement, N2O and organic sample contaminants are gas chromatographically separated from CO2. Pulses of a CO2/N2O mixture are admitted to the tube cracker and follow the path of the sample through the system. This allows an identical treatment and comparison of sample and standard peaks. The ability of the method to reproduce δ13C from bubble and clathrate ice is verified on different ice cores. We achieve reproducibilities for bubble ice between 0.05 ‰ and 0.07 ‰ and for clathrate ice between 0.05 ‰ and 0.09 ‰ (dependent on the ice core used). A comparison of our data with measurements on bubble ice from the same ice core but using a mechanical extraction device shows no significant systematic offset. In addition to δ13C, the CO2 and N2O mixing ratios can be volumetrically derived with a precision of 2 ppmv and 8 ppbv, respectively.
 
Teil von