dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Semi-Lagrangian methods in air pollution models
VerfasserIn A. B. Hansen, J. Brandt, J. H. Christensen, E. Kaas
Medientyp Artikel
Sprache Englisch
ISSN 1991-959X
Digitales Dokument URL
Erschienen In: Geoscientific Model Development ; 4, no. 2 ; Nr. 4, no. 2 (2011-06-24), S.511-541
Datensatznummer 250001665
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/gmd-4-511-2011.pdf
 
Zusammenfassung
Various semi-Lagrangian methods are tested with respect to advection in air pollution modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch andWilliamson (1990) and Machenhauer et al. (2008) as possible. The focus in this study is on accuracy and local mass conservation.

The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran (1999), second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002), third, semi-Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserving Semi-Lagrangian (LMCSL), by Kaas (2008), and last, semi-Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2010).

Semi-Lagrangian (SL) interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass conserving monotonic filter imposes monotonicity.

All schemes are tested with advection alone or with advection and chemistry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives (ASD), see Frohn et al. (2002), presently used at the National Environmental Research Institute (NERI) in Denmark. To enable a consistent comparison only non-divergent flow configurations are tested.

The test cases are based either on the traditional slotted cylinder or the rotating cone, where the schemes' ability to model both steep gradients and slopes are challenged.

The tests showed that the locally mass conserving monotonic filter improved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the current ASD scheme used in DEHM with respect to accuracy.
 
Teil von