|
Titel |
Interaction between ice sheet dynamics and subglacial lake circulation: a coupled modelling approach |
VerfasserIn |
M. Thoma, K. Grosfeld, C. Mayer, F. Pattyn |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1994-0416
|
Digitales Dokument |
URL |
Erschienen |
In: The Cryosphere ; 4, no. 1 ; Nr. 4, no. 1 (2010-01-08), S.1-12 |
Datensatznummer |
250001541
|
Publikation (Nr.) |
copernicus.org/tc-4-1-2010.pdf |
|
|
|
Zusammenfassung |
Subglacial lakes in Antarctica influence to a large extent the flow of the ice sheet. In
this study we use an idealised lake geometry to study this impact.
We employ a) an improved three-dimensional full-Stokes ice flow model
with a nonlinear rheology, b) a three-dimensional fluid dynamics model with
eddy diffusion to simulate the basal mass balance at the lake-ice interface,
and c) a newly developed coupler to exchange boundary
conditions between the two individual models.
Different boundary conditions are applied over grounded ice
and floating ice.
This results in significantly increased
temperatures within the ice on top of the lake, compared to ice at the same
depth outside the lake area. Basal melting of the ice sheet increases this
lateral temperature gradient.
Upstream the ice flow converges towards the lake and
accelerates by about 10% whenever basal melting at the ice-lake boundary is
present. Above and downstream of the lake, where the ice flow diverges, a
velocity decrease of about 10% is simulated. |
|
|
Teil von |
|
|
|
|
|
|