|
Titel |
Global distribution of total ozone and lower stratospheric temperature variations |
VerfasserIn |
W. Steinbrecht, B. Hassler, H. Claude, P. Winkler, R. S. Stolarski |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 3, no. 5 ; Nr. 3, no. 5 (2003-09-22), S.1421-1438 |
Datensatznummer |
250001254
|
Publikation (Nr.) |
copernicus.org/acp-3-1421-2003.pdf |
|
|
|
Zusammenfassung |
This study gives an overview of interannual variations of total ozone and
50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS) and Solar Backscatter
Ultraviolet (SBUV) instruments, and on US National Center for Environmental
Prediction (NCEP) reanalyses. Multiple linear least squares regression is used
to attribute variations to various natural and anthropogenic explanatory variables.
Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very
close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU) change in total ozone corresponds to a
1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to
-30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to
50 DU or 5 K (typical, minimum to maximum), from tropospheric meteorology, up to
30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO), up to 25 DU or
2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation
(ENSO), up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after
the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to
ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex
strength, and to a lesser degree to ENSO, exhibit an inverse correlation between
low latitudes and higher latitudes. Variations related to the solar cycle or
400 hPa temperature, however, have the same sign over most of the globe. Variations are
usually zonally symmetric at low and mid-latitudes, but asymmetric at high
latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the
phases of solar cycle, QBO or ENSO. |
|
|
Teil von |
|
|
|
|
|
|