Neubildungen, Opale bzw. Chalzedon zu beobachten. Allerdings zeigen die in einem zur Thaya entwässernden Graben befindliche Aufschlüsse ebenfalls nur eine geringe Überlagerung des Serpentins.

Der kleine Serpentin-Stock östlich Waldhers-Toilpenstein trägt nur eine dünne Bodendecke. Am Waldweg, der östlich von Fratres vom Zlabingsbachtal zur Rappolzer Straße führt, ist Serpentin mit einer stärkeren, rotbraunen Lehmdecke, welche rostige Kieselsäurekrusten enthält, zu sehen.

Die Aussichten, im genannten Bereich stärkere Anreicherungen von Ni-Hydrosilikaten anzutreffen, sind sehr gering, da im erwähnten Gebiet eine viel zu geringmächtige Verwitterungs-Zone vorhanden ist bzw. früher vorhandene Zersetzungs- (und Anreicherungs-)Zonen erodiert sind. Am relativ günstigsten erscheint in dieser Hinsicht noch das zuletzt genannte Areal.

Graphit: Die ober- und untertägigen Aufnahmen im Bereich der Graphit-Lagerstätte Kaisersberg bei St. Stefan ob Leoben wurden fortgesetzt. Eine geologische Karte der Umgebung des Bergbau-Revieres im Maßstab 1:2000 wurde, vor allem im Westabschnitt der Lagerstätte, fertiggestellt. Die Arbeiten werden 1967 weitergeführt; eine zusammenfassende Darstellung ist gemeinsam mit H. SPATZEK in Vorbereitung.

G i p s / A n h y d r i t : Die von F. BAUER ausgeführten Untersuchungen an Gips-Lagerstätten des Semmerings und im Stanzer Tal sind abgeschlossen; F. BAUER berichtet darüber an anderer Stelle dieser Zeitschrift.

Die Gips-Lagerstätte Preinsfeld bei Heiligenkreuz, N.-Ö., wurde im Zuge des fortschreitenden Abbaues weiter aufgeschlossen. Die bei den Gewinnungsarbeiten im Tagbau sowie auf der 2. Tiefbausohle geschaffenen Aufschlüsse werden vom Verf. laufend aufgenommen. Bisher zeigte sich ein verhältnismäßig regelmäßiges NW-Streichen des Gips-Körpers, wobei das SW-Einfallen der Schichtflächen gegen die Teufe zu wahrscheinlich flacher wird. Die manchmal bis auf die 2. Sohle reichenden, lehmerfüllten Kracks sind häufig an der Kreuzungsstelle zweier Kluftscharen entwickelt. Ziel der weiterzuführenden Arbeiten ist es, den Innenbau eines solchen Gips-Stockes eingehender zu erfassen. Die Auswertung der bisher ausgeführten Flächen-Messungen ergaben noch kein klares Bild eines allfälligen achsialen Gefälles der Lagerstätte Der zukünftige, als Haupt-Förderweg geplante und in NW-Richtung verlaufende Unterbau-Stollen wurde am südlichen Hangfuß des Hügels 436 angeschlagen. Der bisherige Vortrieb bewegt sich in Verwitterungsmaterial von Werfener Schichten, vermischt mit Hangschutt der die benachbarten Kuppen aufbauenden Trias-Kalke.

Spezieller Bericht über Arbeiten des chemischen Laboratoriums

Von WILHELM PRODINGER

A. Silikatgesteine

- 4 Granulite aus dem Raum Göpfritz.
- 1 Biotit Granulit, Bohrloch West WC 1 (12,4 m).
- 2 Biotit Granulit, Bohrloch Nord, NC 1 (14,9 m).
- 3 Pyroxen Granulit, Bohrloch Ost, EC 1 (33,6 m).
- 4 Schistose Granulit, Bohrloch Süd, SC 1 (27,4 m).

1	2	3	4
70,12%	68,05%	64,94%	63,25%
0,40%	0,70%	0,89%	0,60%
$14,\!86\%$	15,97%	17,05%	16,59%
0,68%	1,52%	0,01%	2,97%
3,92%	2,73%	5,43%	3,59%
	0,40% 14,86% 0,68%	70,12% 68,05% 0,40% 0,70% 14,86% 15,97% 0,68% 1,52%	70,12% 68,05% 64,94% 0,40% 0,70% 0,89% 14,86% 15,97% 17,05% 0,68% 1,52% 0,01%

MnO		0,07%	0,02%	0,01%	0,05%
CaO		1,76%	2,44%	3,70%	4,19%
MgO		2,08%	1,65%	0,16%	3,68%
K_2O		2,29%	1,86%	1,60%	1,28%
Na_2O		3,26%	3,78%	3,10%	3,00%
H_2O-		0,08%	0,17%	0,13%	0,24%
H_20^+		0,74%	0,61%	1,79%	0,70%
CO_2		n. b.	0,06%	n. b.	n. b.
P_2O_5		0,09%	0,03%	0,15%	0,12%
Gesamt	-S.	0,18%	0,16%	1,05%	0,22%
		100,53%	99,75%	100,01%	100,48%
		s = 2,80	s = 2,77	s = 2,65	s = 2,87

Einsender: Dir. Dr. KÜPPER

Analytiker: W. PRODINGER

Granit von Stubenberg.

SiO_2	72,56%
TiO ₂	0,40%
Al_2O_3	15,15%
Fe ₂ O ₃	0,52%
FeO	0,97%
MnO	Spuren
CaO	0,28%
MgO	0,37%
K ₂ O	4,54%
Na_2O	3,25%
H_2O-	0,31%
H_2O+	1,68%
CO ₂	0,02%
P_2O_5	0,04%
GesS	0
BaO	0,04%
Cr ₂ O ₃	Spuren
V_2O_3	Ô
ZrO_2	0,05%
Cl	Spuren
	100,15%
	100,1070
s = 2.71	

Einsender: Prof. Dr. H. WIESENEDER

Analytiker: S. SCHARBERT

B. Karbonatgesteine

2 Bohrkerne aus Altaussee 1

	Kern I, 595—595,12 m	Kern II, 596,40—596,60 m
Säureunlöslich	0,83%	1,27%
CaO	29,7 %	31,5 %
MgO	22,29%	20,5 %

Einsender: Dir. Prof. Dr. H. KÜPPER

Analytiker: W. PRODINGER

C. Wässer

9 Oberflächenwässer

Schwechat

	Pegel bei Rathaus Schwechat	Pegel Helenental 89
	Pegelstand 172	Pegelstand 78
Wassertemperatur	16° C	12,8° C
Lufttemperatur	19° C	15,6° C
pН	7,6	7,7
dGH°	23,2	17,5
dKH°	2,1	2,0
dNKH°	21,1	15,5
CaO	136 mg/1000	100 mg/1000
MgO	69 mg/1000	54 mg/1000
CI—	39 mg/1000	8 mg/1000
SO ₃	109 mg/1000	53 mg/1000

Fischa

Pegel Fischamend, Enzersdorfer Straße 87 Pegelstand 150

	Pegelstand 150
${\bf Wassertemperatur}$	13° C
Lufttemperatur	18° C
pH ·	7,5
dGH°	17,0
dKH°	1,7
dNKH°	15,3
CaO	94 mg/1000
M0	55/1000

CaO 94 mg/1000 MgO 55 mg/1000 Cl- 10 mg/1000 SO₃ 54 mg/1000

Leitha

	Pegel bei Deutsch-Haslau	Pegel bei Deutsch-Brodersdorf
	Pegelstand 190	Pegelstand 90
Wassertemperatur	16° C	14° C
Lufttemperatur	20° C	21° C
dGH°	15,4	13,6
dKH°	1,8	1,7
dNKH°	13,6	11,9
CaO	75 mg/1000	92 mg/1000
MgO	57 mg/1000	$32 \mathrm{mg}/1000$
Cl-	14 mg/1000	9 mg/1000
SO ₃	60 mg/1000	49 mg/1000

Pitten

Warth, Pegel bei Brücke

Pegelstand 56

Wassertemperatur	14° C
Lufttemperatur	21° C
pН	7,2
dGH°	4,8

dKH°	0,7
dNKH°	4,1
CaO	26 mg/1000
MgO	16 mg/1000
Cl—	6 mg/1000
SO ₃	9 mg/1000

Schwarza

Gloggnitz, Pegel bei Adlerbrücke

Pegelstand 166

Wassertemperatur	11° C
Lufttemperatur	20° C
pН	7,6
dGH°	12,0
dKH°	1,7
dNKH°	10,3
CaO	78 mg/100
MgO	30 mg/100

CaO 78 mg/1000
MgO 30 mg/1000
Cl— 5 mg/1000
SO₈ 26 mg/1000

Piesting

Wöllersdorf, Pegel unterhalb Bahnhof

Pegelstand 145

Wassertemperatur	12° C
Lufttemperatur	16° C
pН	7,9
dGH°	15,7
dKH°	2,0
dNKH°	13,7
CaO	85 mg/1000
MgO	52 mg/1000
Cl-	5 mg/1000
SO ₃	22 mg/1000

Triesting

Fahrafeld, Pegel bei Brücke

Pegelstand 152

Wassertemperatur	12° C
Lufttemperatur	18° C
pН	8,3
dGH°	16,7
dKH°	2,2
dNKH°	14,5
CaO	141 mg/10
•• •	

CaO 141 mg/1000 MgO 19 mg/1000 Cl— 8 mg/1000 SO₃ 31 mg/1000

Einsender: Dr. T. GATTINGER