AH	IRBUCH	DER GEC	LOGIS	CHEN E	BUNDE	SANSTALT
	Jb. Geol. BA.	ISSN 0016-7800	Band 157	Heft 1–4	S. 301–437	Wien, Dezember 2017

Berichte über Tätigkeiten zur Erstellung der Geologischen Karte der Republik Österreich 1:50.000 in den Jahren 2010–2017

Im Zuge der Umstellung auf das neue topografische Kartenwerk im UTM-System werden die Kartierungsberichte in einen Abschnitt unterteilt, der sich auf das "alte" BMN-System bezieht und einen, der sich auf das "neue" UTM-System bezieht. Details zur Umstellung sind in KRENMAYR (Jahrbuch der Geologischen Bundesanstalt, 150/3–4, 2010) erläutert. Die UTM-Kartenblätter werden ab 2016 im internationalen Blattnamenformat aufgelistet.

Kartenwerk im BMN-System

Blatt 9 Retz

Bericht 2016 über geochemische und petrografische Untersuchungen an Orthogesteinen aus dem Nationalpark Thayatal-Podyjí auf Blatt 9 Retz

MICHAEL MATZINGER & FRIEDRICH FINGER (Auswärtige Mitarbeiter)

Nach der ziemlich ausführlichen Bearbeitung des Abschnitts im Thayatal durch die Salzburger Arbeitsgruppe in den Jahren 2013–2015 (MATZINGER, 2016; MATZINGER & FINGER, 2016) wurde im Herbst 2015 die Westhälfte des Thayatal-Profils durch das Moravikum beprobt. Im Folgenden werden geochemische und petrografische Daten für die verschiedenen Orthogesteine dieses Abschnitts vorgestellt. Angegebene Modalbestände für Quarz, Kalifeldspat, Plagioklas und Biotit beziehen sich auf normative Berechnungen aus den geochemischen Daten und wurden im Dünnschliff auf ihre Konsistenz überprüft.

Analysiert wurden einzelne Granitgneislagen in den Glimmerschiefern des Therasburg-Komplexes, Proben von Therasburger Gneis und Weitersfelder Stängelgneis aus dem Bereich des Umlaufberges, sowie 15 Proben des Bittesch-Gneises zwischen Hardegg und Vranov (Frain). Zusätzlich wurden noch vier Proben von Retzer Granitgneis mitbearbeitet, die beim Wolfsteich, 7,5 km NW von Retz genommen wurden, also ganz im Hangenden des Thayabatholiths.

Bittesch-Gneis

Die Proben von Bittesch-Gneis weisen alle ein Orthogneisgefüge mit variabel großen Kalifeldspataugen auf.

Die SiO₂-Gehalte (Tab. 1) sind durchwegs hoch (meist > 72 Gew.%) und erreichen nicht selten sogar 75 Gew.%. Zwei Proben weisen etwas niedrigere SiO₂-Gehalte von ca. 68 Gew.% auf. Diese beiden Proben, welche von Aufschlüssen beim Schwalbenfelsen bzw. NE davon genommen wurden, haben auch leicht erhöhte Fe₂O₃-Gehalte (2,5 Gew.%). Abgesehen davon ist der Bittesch-Gneis allerdings durch sehr niedrige Eisen- und Magnesiumgehalte charakterisiert. Dementsprechend ist auch der normative Biotitgehalt generell niedrig (5 % und weniger). Trotz der verbreiteten Kalifeldspataugen ist der Kaliumgehalt des Bittesch-Gneises mit 1-3 Gew.% nur moderat und die K₂O/Na₂O-Verhältnisse liegen generell unter 1. Aufgrund der daraus resultierenden Dominanz von normativem Plagioklas gegenüber Kalifeldspat kann der Bittesch-Gneis als leukogranodioritisch bis leukotonalitisch beschrieben werden.

Die Quarzgehalte liegen zwischen 25–35 %. Die Plagioklasgehalte erreichen in den leukotonalitischen Proben 50–60 % bei einem Kalifeldspatanteil von nur 3–6 %. Die leukogranodioritischen Varianten haben im Allgemeinen Plagioklasgehalte von 40–50 % und der Kalifeldspatanteil liegt hier meist zwischen 10–20 %.

Die Proben aus dem Thayatal weisen die für den Bittesch-Gneis allgemein sehr typischen niedrigen Rb/Srund hohen Sr/Zr-Verhältnisse (FINGER & RIEGLER, 2013) auf, wobei die Rb-Gehalte selten über 100 ppm (meist zwischen 20–80 ppm), die Sr-Gehalte zwischen 200 und 700 ppm und die Zr-Gehalte zwischen 60 und 170 ppm liegen. Es muss hier angemerkt werden, dass Zr-Gehalte über 100 ppm im Bittesch-Gneis bisher nur sehr selten gemessen wurden (FINGER & RIEGLER, 2014). Umso überraschender ist also, dass 8 der 15 analysierten Proben von Bittesch-Gneis aus dem Thayatal mehr als 100 ppm Zr enthalten. Diese Proben weisen auch erhöhte CaO-(meist zwischen 2 und 3,8 Gew.%) und teilweise ausgesprochen hohe Sr-Gehalte (zwischen 450 und 725 ppm) auf. Auch die beiden zuvor erwähnten SiO₂-ärmeren Proben besitzen diese Eigenschaften. Affinitäten könnten zum Bittesch-Gneis von Mallersbach bestehen (BERNROIDER, 1989; FINGER & STURM, 1994).

Im Dünnschliff weisen die Proben des Bittesch-Gneises durchwegs eine feinkörnig rekristallisierte Quarz- und Plagioklasmatrix auf. Primäre Kalifeldspataugen – untergeordnet auch Plagioklasaugen – erreichen als magmatische Relikte Korngrößen bis zu 5 mm. Schieferungsparallel treten vielfach dünne Quarzlagen von bis zu 0,5 mm Dicke auf, in welchen der Quarz deutlich gröbere Ausbildung zeigt.

Der Biotit ist gewöhnlich braun und in dynamisch rekristallisierten Domänen konzentriert. In einer Probe (MM 104-15) zeigt der Biotit grüne Eigenfarbe und es tritt hier auch mehr Chlorit auf als in den anderen Bittesch-Gneis Proben. Gelegentlich (z.B. in Probe MM 105-15) dominiert feinschuppiger Muskovit über Biotit. Diese feinschuppigen, ebenfalls in dynamisch rekristallisierten Domänen angereicherten Muskovite sind ohne Zweifel metamorph gebildet. In einzelnen Fällen konnten aber auch nahezu idiomorphe Muskovite mit bis zu 3 mm Größe beobachtet

	1	2	3	4	5	6	7	8	9	10	11
Probe	MM 81-15	MM 84-15	MM 91-15	MM 92-15	MM 97-15	MM 101-15	MM 104-15	MM 105-15	MM 107-15	MM 109-15	MM 111-15
Gestein	BG	BG	BG	BG	BG	BG	BG	BG	BG	BG	BG
SiO ₂	74,65	73,02	73,08	70,90	67,87	67,34	74,30	74,58	73,16	72,29	72,67
TiO ₂	0,10	0,19	0,21	0,23	0,38	0,41	0,17	0,17	0,13	0,20	0,15
Al ₂ O ₃	14,35	14,98	15,76	16,11	16,75	17,42	13,55	13,89	15,05	15,22	15,13
Fe ₂ O ₃	1,09	1,38	1,02	1,60	3,10	2,78	1,80	1,46	1,28	1,57	1,36
MnO	0,02	0,02	0,01	0,02	0,04	0,04	0,02	0,03	0,04	0,03	0,03
MgO	0,54	0,76	0,26	0,44	1,42	1,39	1,74	0,95	0,28	0,40	0,31
CaO	0,28	2,45	2,43	2,44	3,20	2,61	0,71	1,19	1,82	1,94	1,94
Na ₂ O	4,86	5,99	5,80	5,19	5,14	5,30	5,74	5,36	4,35	4,99	4,51
K ₂ O	3,48	0,73	0,87	2,41	1,61	2,02	1,36	1,46	3,22	2,67	3,21
P ₂ O ₅	0,08	0,02	0,07	0,09	0,20	0,08	0,07	0,06	0,10	0,10	0,12
SO ₃	0,05	0,01	0,00	0,01	0,06	0,07	0,01	0,22	0,04	0,00	0,01
GV	0,99	0,44	0,72	0,61	0,72	0,86	0,78	1,04	0,89	0,50	0,50
Summe	100,49	99,99	100,23	100,05	100,49	100,32	100,25	100,41	100,36	99,91	99,94
Rb	127	27	20	46	49	65	63	56	102	77	124
Sr	168	530	479	725	561	508	211	225	397	611	459
Ba	643	161	316	953	425	531	97	155	744	887	769
Th	3	u.d.N.	u.d.N.	u.d.N.	u.d.N.	u.d.N.	4	6	4	8	5
La	12	13	20	8	18	22	16	20	12	33	22
Ce	24	27	48	11	24	32	34	56	28	63	43
Nd	12	6	16	u.d.N.	15	13	10	20	11	31	23
Ga	17	15	16	19	19	20	17	14	17	19	20
Nb	7	5	8	9	12	8	6	4	9	9	9
Zr	64	149	123	115	116	174	90	105	80	112	91
Y	13	5	4	4	7	6	5	7	13	5	12
Sc	u.d.N.	u.d.N.	u.d.N.	u.d.N.	u.d.N.	5	3	u.d.N.	u.d.N.	u.d.N.	u.d.N.
Pb	5	8	7	11	7	8	u.d.N.	u.d.N.	7	14	12
Zn	15	18	18	36	45	52	15	12	41	48	41
V	8	6	10	12	36	23	6	9	4	13	5
Co	u.d.N.	3	3	u.d.N.	5	u.d.N.	u.d.N.	u.d.N.	u.d.N.	3	u.d.N.
Cr	6	2	33	7	6	21	5	5	10	15	19
Ni	4	6	8	7	10	13	5	7	5	6	7
Koordinaten											
R	714900	714616	713755	713755	714313	713899	713726	713726	713533	713747	713452
Н	413311	413335	413699	413974	414913	414294	415879	415879	416124	416408	416704
Tab 1 Toil 1											

werden (z.B. in Probe MM 142-15), welche eventuell magmatischen Ursprungs sein könnten. Es ist hier anzumerken, dass SCHARBERT et al. (1997) an solchen großen Muskoviten aus dem Bittesch-Gneis prävariszische Ar-Ar-Alter nachgewiesen haben.

Die meisten Proben von Bittesch-Gneis aus dem Thayatal führen kleinen akzessorischen Granat, insofern wäre auch dieser Orthogneis für thermobarometrische Untersuchungen zur Klärung der variszischen Metamorphosezonierung im Moravikum sehr geeignet.

Weitersfelder Stängelgneis

Typisch für dieses meist leukokrate Gestein sind die ultramylonitischen Deformationsgefüge. Relikte magmatischer Minerale sind nur sehr selten in Form von ausgelängten Kalifeldspataugen erhalten.

Von 14 (ultra)mylonitischen Proben des Stängelgneises wurden neun geochemisch analysiert (Tab. 1), wobei sowohl sehr helle, weißlich-gelbe als auch graue Varianten des Gesteins erfasst wurden.

Die Gesteine zeigen saure Zusammensetzung mit SiO₂-Gehalten zwischen 69 und 75 Gew.% bei 3–5,5 Gew.% K₂O und ca. 5 Gew.% Na₂O. Der normative Modalbestand der genommenen Proben pendelt zwischen granitisch und granodioritisch. Die Quarzgehalte liegen zwischen 25 und 35 %. Plagioklas ist mit 30–45 %, Kalifeldspat mit 15–33 % vorhanden. Die Biotitgehalte liegen zwischen 2 und 8 %.

	12	13	14	15	16	17	18	19	20	21	22
Probe	MM 112-15	MM 142-15	MM 143-15	MM 149-15	MM 46-15	MM 47-15	MM 123-15	MM 124-15	MM 125-15	MM 126-15	MM 127-15
Gestein	BG	BG	BG	BG	MY	MY	MY	MY	MY	MY	MY
SiO ₂	73,39	74,02	72,07	73,21	73,62	74,83	70,75	73,46	72,01	71,01	68,41
TiO ₂	0,15	0,08	0,19	0,13	0,16	0,14	0,19	0,10	0,22	0,15	0,19
Al ₂ O ₃	15,49	14,89	15,37	15,16	14,44	14,48	16,06	14,61	15,19	15,78	18,62
Fe ₂ O ₃	0,76	0,96	1,44	1,08	1,47	1,21	1,57	1,05	1,76	1,27	1,17
MnO	0,01	0,03	0,03	0,01	0,03	0,02	0,01	0,00	0,03	0,02	0,02
MgO	0,14	0,14	0,60	0,37	0,31	0,28	0,37	0,04	0,43	0,34	0,77
CaO	0,91	1,15	2,87	1,49	0,68	0,42	0,95	0,33	1,14	1,26	2,10
Na ₂ O	6,63	3,91	5,76	6,25	4,88	4,63	4,70	4,40	4,97	3,42	4,68
K ₂ O	1,96	4,20	1,09	1,76	3,77	3,37	4,54	4,93	3,62	5,42	3,29
P ₂ O ₅	0,08	0,10	0,09	0,07	0,10	0,08	0,09	0,04	0,11	0,07	0,10
SO3	0,00	0,00	0,02	0,00	0,00	0,01	0,01	0,32	0,00	0,00	0,00
GV	0,78	0,72	0,41	0,41	0,58	1,00	1,14	1,15	0,74	1,65	1,09
Summe	100,30	100,20	99,94	99,94	100,04	100,47	100,38	100,43	100,22	100,39	100,44
Rb	52	155	27	42	134	138	152	151	130	215	107
Sr	220	211	532	230	197	132	210	118	171	174	291
Ва	389	591	283	610	680	646	738	766	480	663	673
Th	4	u.d.N.	6	5	10	8	11	14	11	7	6
La	21	9	22	23	29	25	27	7	30	30	33
Ce	38	21	48	31	53	63	59	11	56	47	51
Nd	25	12	17	17	27	24	22	u.d.N.	20	24	22
Ga	17	17	14	18	17	16	18	19	20	19	23
Nb	8	10	7	7	9	8	11	14	9	10	8
Zr	97	51	106	88	100	105	125	233	117	96	122
Y	11	11	10	10	15	13	19	41	14	8	12
Sc	u.d.N.	u.d.N.	4	4	6	u.d.N.	u.d.N.	8	6	7	7
Pb	11	16	9	12	13	13	40	20	20	15	11
Zn	21	40	19	20	48	26	56	16	34	27	29
V	5	0	13	6	9	6	4	u.d.N.	14	3	25
Со	u.d.N.	u.d.N.	6	u.d.N.	6	4	u.d.N.	u.d.N.	3	2	3
Cr	10	5	12	6	23	4	39	13	8	13	14
Ni	6	5	12	7	9	6	6	5	8	7	9
Koordinaten											
R	713785	715208	712515	712583	717889	717796	717663	717655	717636	717529	717480
Н	415453	413429	418039	417618	412067	411994	411823	411810	411793	411626	411564
Tab. 1., Teil 2.											

	23	24	25	26	27	28	29	30	31	32	33
Probe	MM 128-15	MM 129-15	MM 39-15	MM 40-15	MM 41-15	MM 43-15	MM 44-15	MM 119-15	MM 120-15	MM 121-15	MM 122-15
Gestein	MY	MY	TBG	TBG	TBG	TBG	TBG	RG	RG	RG	RG
SiO ₂	72,42	69,33	64,74	66,33	66,45	66,55	66,17	71,98	72,02	70,72	72,31
TiO ₂	0,17	0,33	0,73	0,73	0,69	0,71	0,74	0,26	0,25	0,27	0,21
Al ₂ O ₃	14,74	16,57	15,90	15,45	15,29	15,40	15,04	14,70	14,94	15,48	14,77
Fe ₂ O ₃	1,43	2,95	4,83	4,47	4,63	4,67	5,07	2,36	2,24	2,43	1,96
MnO	0,02	0,04	0,09	0,07	0,07	0,07	0,06	0,04	0,05	0,05	0,04
MgO	0,36	0,57	2,20	2,20	1,87	2,04	3,31	0,66	0,61	0,81	0,55
CaO	1,39	1,08	2,39	3,00	2,52	3,07	0,61	1,59	1,38	1,44	1,37
Na ₂ O	4,09	5,02	4,06	4,02	4,17	4,06	4,85	4,02	4,29	4,23	3,71
K ₂ O	4,36	2,92	3,97	2,76	3,27	2,70	3,41	3,71	3,55	3,89	4,43
P ₂ O ₅	0,08	0,14	0,18	0,17	0,16	0,16	0,19	0,11	0,10	0,11	0,08
SO ₃	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
GV	1,42	1,55	1,32	1,16	1,28	0,82	0,99	0,75	1,01	0,95	0,73
Summe	100,49	100,51	100,43	100,37	100,41	100,26	100,45	100,19	100,45	100,39	100,17
Rb	156	109	124	106	133	103	123	138	105	133	141
Sr	250	253	206	216	207	184	91	283	303	318	271
Ва	710	633	2711	476	538	494	373	710	678	767	787
Th	9	5	10	10	9	11	9	7	6	8	6
La	30	22	31	29	32	34	33	28	19	26	30
Ce	52	38	49	57	63	64	64	47	35	62	52
Nd	19	23	27	26	27	30	28	23	15	22	24
Ga	17	17	19	18	17	18	19	17	19	19	18
Nb	10	8	10	10	9	8	8	10	13	10	10
Zr	118	157	207	226	200	199	182	139	148	147	120
Υ	13	16	30	34	32	30	34	13	11	17	11
Sc	u.d.N.	9	9	10	15	9	11	8	u.d.N.	u.d.N.	6
Pb	12	2	16	14	12	19	9	10	12	11	11
Zn	16	36	80	61	61	64	43	55	42	47	47
V	7	11	62	56	57	51	60	9	14	18	7
Со	u.d.N.	3	11	12	11	10	11	4	2	u.d.N.	3
Cr	3	6	44	39	27	35	72	6	7	11	7
Ni	7	7	17	15	13	16	16	7	6	8	5
Koordinaten											
R	717445	716477	717578	717578	717613	718149	718010	718052	718057	717950	717968
Н	411532	410422	411158	411158	411590	411897	411999	408223	408120	408034	407891
Tab 1 Teil 3				I							

Wie bereits FINGER & RIEGLER (2011) anmerken, zeigt der Weitersfelder Stängelgneis eine ziemlich unauffällige Spurenelementgeochemie. Geochemische Alleinstellungsmerkmale, anhand derer der Weitersfelder Stängelgneis klar definiert werden könnte, fehlen leider.

Im Dünnschliff zeigt sich eine feine Matrix aus Quarz und Feldspäten mit Korngrößen im Submillimeterbereich. Biotit dominiert über Muskovit und tritt in Form feiner Lineale auf. Der Quarz ist elongiert und wie der Biotit straff eingeregelt.

Therasburger Gneis

Die fünf analysierten Proben von Therasburger Gneis stammen aus dem Bereich des östlichen Umlaufberges.

Das Gestein ist mittel- bis dunkelgrau und weist ein Augengneis- bis Mylonitgefüge auf.

Geochemisch kann der Gneis als intermediär/leicht sauer beschrieben werden (65–67 Gew.% SiO₂). CaO-Gehalte bis zu 3 Gew.% und Na₂O-Gehalte über 4 Gew.%, gegenüber 2,7–4 Gew.% K₂O, weisen auf einen granodioritischen Charakter des Materials hin. Die FeO-Gehalte sind mit 4,5 bis 6 Gew.% im Vergleich zu Bittesch-Gneis und Weitersfelder Stängelgneis wesentlich höher, ebenso wie die TiO₂- (~ 0,7 Gew.%), MgO- (1,8–3,3 Gew.%) und P₂O₅-Gehalte (0,16–0,19 Gew.%, Tab. 1). Die neuen Daten aus dem Thayatal passen gut zum bereits existierenden Datensatz für die Therasburger Gneise (SiO₂: 64–67 Gew.%, TiO₂: ~ 0,7 Gew.%, Fe₂O₃: ~ 5 Gew.%, Zr: ~ 200 ppm; FINGER & RIEGLER, 2006).

	34	35	36	37	38	39	40	41	42	43
Probe	MM 10-15	MM 11-15	MM 13-15	MM 14-15	MM 113-15	MM 114-15	MM 115-15	MM 116-15	MM 117-15	MM 118-15
Gestein	G-TB	G-TB	G-TB	G-TB	G-TB	G-TB	G-TB	G-TB	G-TB	G-TB
SiO ₂	75,29	74,86	72,02	75,69	73,86	73,45	72,29	69,22	73,52	72,98
TiO ₂	0,02	0,12	0,03	0,02	0,21	0,24	0,15	0,23	0,13	0,06
Al ₂ O ₃	14,24	14,29	16,83	14,77	13,76	14,30	14,80	16,69	14,36	14,77
Fe ₂ O ₃	1,07	1,07	0,80	0,79	1,49	1,39	0,98	1,60	1,39	0,44
MnO	0,16	0,01	0,22	0,15	0,04	0,03	0,01	0,02	0,04	0,01
MgO	0,09	0,25	0,16	0,11	0,51	0,54	0,39	0,47	0,29	0,12
CaO	0,34	2,68	1,56	0,83	0,53	0,65	0,47	0,86	1,02	0,30
Na ₂ O	4,85	5,68	5,29	4,65	3,73	3,40	2,98	3,07	4,60	2,92
K ₂ O	3,46	0,53	2,44	2,15	5,23	5,37	7,32	7,12	4,10	7,78
P ₂ O ₅	0,06	0,06	0,06	0,10	0,10	0,09	0,10	0,14	0,08	0,12
SO ₃	0,00	0,00	0,01	0,01	0,00	0,00	0,00	0,02	0,00	0,00
GV	0,84	0,55	1,06	1,19	0,68	0,96	0,62	0,98	0,69	0,57
Summe	100,42	100,10	100,48	100,46	100,14	100,42	100,11	100,42	100,22	100,07
Rb	122	25	70	90	173	142	234	274	150	288
Sr	49	392	214	131	123	136	192	269	181	144
Ва	58	90	581	189	559	660	596	580	359	514
Th	12	7	10	10	49	60	28	36	9	9
La	9	15	13	32	82	53	20	42	23	9
Ce	28	48	19	58	159	152	45	78	44	19
Nd	19	11	24	32	69	55	17	38	21	14
Ga	23	15	19	26	16	15	16	20	18	15
Nb	27	4	17	40	9	9	7	16	11	5
Zr	30	89	62	42	161	137	85	49	93	49
Y	70	7	78	39	28	21	18	20	30	20
Sc	u.d.N.	u.d.N.	10	u.d.N.	5	6	5	6	u.d.N.	u.d.N.
Pb	25	12	13	23	18	23	63	37	17	34
Zn	12	13	11	19	22	20	47	42	35	12
V	3	12	9	u.d.N.	9	8	9	14	5	u.d.N.
Со	u.d.N.	2	u.d.N.	6	2	4	u.d.N.	2	u.d.N.	2
Cr	3	8	5	u.d.N.	13	7	7	6	u.d.N.	13
Ni	6	10	6	6	7	9	7	8	6	6
Koordinaten										
R	719688	719688	719732	719732	717866	717866	717831	717832	717832	717832
Н	410767	410767	410801	410801	408384	408384	408522	408544	408544	408645

Tab. 1., Teil 4.

Röntgenfluoreszenzanalyse der beprobten Gesteine. Hauptelemente in Gew.%, Spurenelemente in ppm. GV = Glühverlust, u.d.N. = unter der Nachweisgrenze, Koordinaten BMN M34; Proben 1–15: Bittesch-Gneis (BG), 16–24: Mylonite/Weitersfelder Stängelgneis (MY), 25–29: Therasburger Gneis (TBG), 30–33: Retzer Granitgneis (RG), 34–43: Granitgneislagen des Therasburg-Komplexes (G-TB).

Die dunkle Färbung des Gesteins ergibt sich aus den relativ hohen Biotitgehalten (15–21 % normativ). Die Quarzgehalte liegen zwischen 21–25 %, Plagioklas um 45 %, während die Kalifeldspatgehalte mit 7–14 % gering sind.

Im Dünnschliff zeigen sich bisweilen nestartige Verwachsungen von grünem Biotit und Epidot, ein Hinweis auf eine primäre, magmatische Hornblendeführung. Es ist sehr viel akzessorischer Titanit vorhanden, welcher meist eng mit Biotit verwachsen ist.

Retzer Granitgneis

Die Proben von Retzer Granitgneis beim Wolfsteich repräsentieren den hangenden Abschnitt des Thayabatholiths im Nahbereich zum Therasburg-Komplex. Es handelt sich um mittelgrauen, mittelkörnigen Granitgneis.

Die normativen Modalbestände liegen, wie für Retzer Granitgneis typisch, im Grenzbereich Granit-Granodiorit (MATZINGER, 2016). Mit SiO₂-Gehalten von 71–72 Gew.%, K₂O- und Na₂O-Gehalte um je 4 Gew.%, und auch was die Spurenelemente betrifft (120–150 ppm Zr, 270–320 ppm Sr), liegen die Proben in der normalen Bandbreite des Retzer Granitgneises. Die TiO₂-Gehalte von drei

der Proben liegen zwischen 0,25–0,27 Gew.% und entsprechen somit den allgemein höheren Ti-Werten in der Randzone des Retzer Granitgneises (MATZINGER & FINGER, 2016). Eine Probe im Liegenden des beprobten Abschnitts weist einen vergleichsweise geringeren TiO₂-Gehalt von 0,21 Gew.% auf und zeigt damit bereits Anklänge zur zentralen Fazies des Retzer Granitgneises (MATZINGER, 2016).

Im Dünnschliffbild zeigt der Retzer Granitgneis vom Wolfsteich eine feinkörnige, rekristallisierte Matrix aus Plagioklas und Quarz. Darin finden sich einige Porphyroklasten magmatischer Plagioklase, welche stark von Serizitisierung betroffen sind und zum Teil auch Epidot-/Klinozoisit-Einschlüsse führen. Feinste Muskovit- und Epidotmikrolithen finden sich auch innerhalb der rekristallisierten Matrix. Reliktische magmatische Kalifeldspäte erreichen bis zu 2 mm Größe und sind schwach perthitisch. An Akzessorien führen die Proben vom Retzer Granitgneis Apatit, Titanit, Allanit und Granat.

Granitgneislagen in den Glimmerschiefern des Therasburg-Komplexes

Die analysierten Proben stammen aus dem Liegenden des Therasburg-Komplexes nördlich von Niederfladnitz und aus dem Thayatal westlich der Wendelwiese. Die mittelkörnigen, oft nur mäßig deformierten Granitgneislagen in den Glimmerschiefern sind meist konkordant und von unterschiedlicher Mächtigkeit (dm- bis m), fallweise treten teils diskordante aplitische Körper auf.

Die Geochemie dieser Granitgneislagen variiert ziemlich stark. Drei Proben (MM 115-15, MM 116-15, MM 118-15) weisen extrem hohe K₂O-Gehalte (7–8 Gew.%) auf. Bei 69–73 Gew.% SiO₂, einem (normativen) Quarzgehalt von 22–26 %, einem Plagioklasgehalt von 21–25 % und einem Kalifeldspatanteil zwischen 43 und 50 % haben diese Proben leuko-syenogranitische Zusammensetzung. Die Fe-Gehalte liegen zwischen 0,4–1,6 Gew.%, was einem Biotitgehalt von 1–5 % entspricht.

Mit Quarz-, Plagioklas- und Kalifeldspatgehalten von jeweils ~ 30 % bzw. einem normativen Biotitgehalt von knapp 5 % sind zwei weitere Granitgneislagen vom Wolfsteich als leukogranitisch anzusprechen. Sie unterscheiden sich in den Spurenelementmustern deutlich von den K₂O-reichen Varianten, indem sie stark erhöhte LREE (light rare earth elements)-Gehalte (La: 53 bzw. 82 ppm, Ce: ~ 150 ppm, Nd: 55 bzw. 69 ppm) und hohes Th (49 bzw. 60 ppm) aufweisen. Zudem sind die Zr-Gehalte mit 137 bzw. 161 ppm gegenüber den anderen Granitgneislagen (< 100 ppm) erhöht.

Man kann somit festhalten, dass die Zusammensetzung der Granitgneislagen im Therasburg-Komplex nicht dem östlich anschließenden Retzer Granit entspricht. Die meisten dieser Granitgneislagen lassen sich auch nicht als magmatische Differenziate des Retzer Granitgneises interpretieren und gehen auf andersartige Magmen zurück.

Im Dünnschliff zeigen sich die Granitgneislagen ebenfalls variabel. In Probe MM 116-15 sind die Biotite grün und zudem deutlich chloritisiert. Feiner metamorpher Muskovit ist in Aggregaten erkennbar. Die Plagioklase weisen eine sehr feinkörnige Füllung aus Muskovit und untergeordnet Epidotmineralen auf. Kalifeldspat (Mikroklin) bildet große idiomorphe Kristalle mit leichter perthitischer Entmischung. Die rekristallisierten Quarze treten oft zu Lagen zusammen. In Probe MM 117-15 tritt brauner Biotit auf und Muskovit ist nur sehr untergeordnet vorhanden. Gröbere Kalifeldspäte sind hier selten, einzelne Körner erreichen ca. 3 mm Größe. Quarz und Plagioklas sind praktisch vollständig rekristallisiert und bilden eine gut geregelte, feinkörnige Matrix.

Literatur

BERNROIDER, M. (1989): Zur Petrogenese präkambrischer Metasedimente und cadomischer Magmatite im Moravikum. – Jahrbuch der Geologischen Bundesanstalt, **2**, 349–373, Wien.

FINGER, F. & RIEGLER, G. (2006): Bericht 2005 über petrographische und geochemische Untersuchungen an Metagranitoiden und Orthogneisen des Moravikums auf Blatt 21 Horn. – Jahrbuch der Geologischen Bundesanstalt, **146**/1+2, 123–126, Wien.

FINGER, F. & RIEGLER, G. (2011): Bericht 2010 über petrographische und geochemische Untersuchungen an Metagranitoiden und Orthogneisen des Moravikums auf Blatt 21 Horn. – Jahrbuch der Geologischen Bundesanstalt, **151**/1+2, 91–92, Wien.

FINGER, F. & RIEGLER, G. (2013): Bericht 2012 über petrographische und geochemische Untersuchungen an Graniten und Orthogneisen des Moravikums auf Blatt 21 Horn. – Jahrbuch der Geologischen Bundesanstalt, **153**/1–4, 361–364, Wien.

FINGER, F. & RIEGLER, G. (2014): Bericht 2013 über petrografische und geochemische Untersuchungen an Orthogneisen des Moravikums auf Blatt 21 Horn. – Jahrbuch der Geologischen Bundesanstalt, **154**/1–4, 255–258, Wien.

FINGER, F. & STURM, R. (1994): Bericht 1993 über petrographische Untersuchungen am grobkörnigen Gneis von Mallersbach auf Blatt 8 Geras. – Jahrbuch der Geologischen Bundesanstalt, **137**/3, 539–541, Wien.

MATZINGER, M. (2016): Der Thayabatholith im Nationalpark Thayatal-Podyjí: Geochemie, Petrographie und Metamorphose. – Masterarbeit, Paris Lodron Universität Salzburg, 84 S., Salzburg.

MATZINGER, M. & FINGER, F. (2016): Bericht 2014 über geochemische und petrografische Untersuchungen im Thayabatholith im Nationalpark Thayatal-Podyjí auf Blatt 9 Retz. – Jahrbuch der Geologischen Bundesanstalt, **156**/1–4, 217–223, Wien.

SCHARBERT, S., BREITER, K. & FRANK, W. (1997): The Cooling History of the Southern Bohemian Massif. – Journal of the Czech Geological Society (Journal of Geosciences), **42**/3, 24, Praha.