Berichte Geol. B.-A., **104**, ISSN 1017-8880 2nd Internat. Workshop on Geoelectrical Monitoring GELMON 2013, Vienna, 04.-06.12.2013

GELMON 2013

Oral Presentations

Applications in CO₂ and Hydrocarbon Monitoring

01

Combination of constrained resistivity inversion and seismic reflection with an application to 4D imaging of the Ketzin CO₂ storage site, Germany

Bergmann Peter¹, Ivandic Monika², Norden Ben³, Rücker Carsten⁴, Kiessling Dana⁵, Lueth Stefan¹, Schmidt-Hattenberger Cornelia¹, Juhlin Christopher²

¹GFZ German Research Centre for Geosciences, Centre for Geological Storage

(bergmann@gfz-potsdam.de)

²*Uppsala University, Department of Earth Sciences*

³GFZ German Research Centre for Geosciences, Reservoir Technologies

⁴Technical University Berlin, Department of Applied Geophysics

⁵University of Leipzig, Institute of Geophysics and Geology

A case study for the combination of geoelectric and seismic processing by means of a structurally constrained inversion approach is presented. Structural constraints are interpreted from the seismic data and integrated into the geoelectric inversion through a local regularization which allows inverted resistivities to behave discontinuously across defined boundaries. This arranges seismic processing and constrained resistivity inversion in a sequential workflow, making the generic assumption that the petrophysical parameters of relevant to each method change across common lithostructural boundaries.

The approach is evaluated using both a numerical example and a real data example from the Ketzin CO₂ pilot storage site, Germany. The latter demonstrates the efficiency of this approach for combining 4D seismic and surface-downhole geoelectric data. In consistence with the synthetic example, the constrained resistivity inversions of the real data produce clearer delineated images along the boundary between the caprock and the CO₂ storage reservoir. Near the CO₂ flooded reservoir, the seismic and geoelectric time lapse anomalies correlate well. At some distance to the downhole electrodes, however, the geoelectric images convey a notably lower resolution in comparison to the corresponding seismic images. Although a northerly direction for the CO₂ migration was initially expected, both methods confirm a rather northwesterly migration trend. The results confirm the relevance of the presented approach for the combination of both methods for geophysical CO₂ storage monitoring.